Source code for pyarrow.parquet

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from collections import defaultdict
from concurrent import futures
from functools import partial

from six.moves.urllib.parse import urlparse
import json
import numpy as np
import os
import re
import six

import pyarrow as pa
import pyarrow.lib as lib
import pyarrow._parquet as _parquet

from pyarrow._parquet import (ParquetReader, RowGroupStatistics,  # noqa
                              FileMetaData, RowGroupMetaData,
                              ColumnChunkMetaData,
                              ParquetSchema, ColumnSchema)
from pyarrow.compat import guid
from pyarrow.filesystem import (LocalFileSystem, _ensure_filesystem,
                                resolve_filesystem_and_path)
from pyarrow.util import _is_path_like, _stringify_path

_URI_STRIP_SCHEMES = ('hdfs',)


def _parse_uri(path):
    path = _stringify_path(path)
    parsed_uri = urlparse(path)
    if parsed_uri.scheme in _URI_STRIP_SCHEMES:
        return parsed_uri.path
    else:
        # ARROW-4073: On Windows returning the path with the scheme
        # stripped removes the drive letter, if any
        return path


def _get_filesystem_and_path(passed_filesystem, path):
    if passed_filesystem is None:
        return resolve_filesystem_and_path(path, passed_filesystem)
    else:
        passed_filesystem = _ensure_filesystem(passed_filesystem)
        parsed_path = _parse_uri(path)
        return passed_filesystem, parsed_path


def _check_contains_null(val):
    if isinstance(val, six.binary_type):
        for byte in val:
            if isinstance(byte, six.binary_type):
                compare_to = chr(0)
            else:
                compare_to = 0
            if byte == compare_to:
                return True
    elif isinstance(val, six.text_type):
        return u'\x00' in val
    return False


def _check_filters(filters):
    """
    Check if filters are well-formed.
    """
    if filters is not None:
        if len(filters) == 0 or any(len(f) == 0 for f in filters):
            raise ValueError("Malformed filters")
        if isinstance(filters[0][0], six.string_types):
            # We have encountered the situation where we have one nesting level
            # too few:
            #   We have [(,,), ..] instead of [[(,,), ..]]
            filters = [filters]
        for conjunction in filters:
            for col, op, val in conjunction:
                if (
                    isinstance(val, list)
                    and all(_check_contains_null(v) for v in val)
                    or _check_contains_null(val)
                ):
                    raise NotImplementedError(
                        "Null-terminated binary strings are not supported as"
                        " filter values."
                    )
    return filters

# ----------------------------------------------------------------------
# Reading a single Parquet file


[docs]class ParquetFile(object): """ Reader interface for a single Parquet file Parameters ---------- source : str, pathlib.Path, pyarrow.NativeFile, or file-like object Readable source. For passing bytes or buffer-like file containing a Parquet file, use pyarorw.BufferReader metadata : ParquetFileMetadata, default None Use existing metadata object, rather than reading from file. common_metadata : ParquetFileMetadata, default None Will be used in reads for pandas schema metadata if not found in the main file's metadata, no other uses at the moment memory_map : boolean, default True If the source is a file path, use a memory map to read file, which can improve performance in some environments """
[docs] def __init__(self, source, metadata=None, common_metadata=None, memory_map=True): self.reader = ParquetReader() self.reader.open(source, use_memory_map=memory_map, metadata=metadata) self.common_metadata = common_metadata self._nested_paths_by_prefix = self._build_nested_paths()
def _build_nested_paths(self): paths = self.reader.column_paths result = defaultdict(list) def _visit_piece(i, key, rest): result[key].append(i) if len(rest) > 0: nested_key = '.'.join((key, rest[0])) _visit_piece(i, nested_key, rest[1:]) for i, path in enumerate(paths): _visit_piece(i, path[0], path[1:]) return result @property def metadata(self): return self.reader.metadata @property def schema(self): return self.metadata.schema @property def num_row_groups(self): return self.reader.num_row_groups
[docs] def read_row_group(self, i, columns=None, use_threads=True, use_pandas_metadata=False): """ Read a single row group from a Parquet file Parameters ---------- columns: list If not None, only these columns will be read from the row group. A column name may be a prefix of a nested field, e.g. 'a' will select 'a.b', 'a.c', and 'a.d.e' use_threads : boolean, default True Perform multi-threaded column reads use_pandas_metadata : boolean, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded Returns ------- pyarrow.table.Table Content of the row group as a table (of columns) """ column_indices = self._get_column_indices( columns, use_pandas_metadata=use_pandas_metadata) return self.reader.read_row_group(i, column_indices=column_indices, use_threads=use_threads)
[docs] def read(self, columns=None, use_threads=True, use_pandas_metadata=False): """ Read a Table from Parquet format Parameters ---------- columns: list If not None, only these columns will be read from the file. A column name may be a prefix of a nested field, e.g. 'a' will select 'a.b', 'a.c', and 'a.d.e' use_threads : boolean, default True Perform multi-threaded column reads use_pandas_metadata : boolean, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded Returns ------- pyarrow.table.Table Content of the file as a table (of columns) """ column_indices = self._get_column_indices( columns, use_pandas_metadata=use_pandas_metadata) return self.reader.read_all(column_indices=column_indices, use_threads=use_threads)
[docs] def scan_contents(self, columns=None, batch_size=65536): """ Read contents of file with a single thread for indicated columns and batch size. Number of rows in file is returned. This function is used for benchmarking Parameters ---------- columns : list of integers, default None If None, scan all columns batch_size : int, default 64K Number of rows to read at a time internally Returns ------- num_rows : number of rows in file """ column_indices = self._get_column_indices(columns) return self.reader.scan_contents(column_indices, batch_size=batch_size)
def _get_column_indices(self, column_names, use_pandas_metadata=False): if column_names is None: return None indices = [] for name in column_names: if name in self._nested_paths_by_prefix: indices.extend(self._nested_paths_by_prefix[name]) if use_pandas_metadata: file_keyvalues = self.metadata.metadata common_keyvalues = (self.common_metadata.metadata if self.common_metadata is not None else None) if file_keyvalues and b'pandas' in file_keyvalues: index_columns = _get_pandas_index_columns(file_keyvalues) elif common_keyvalues and b'pandas' in common_keyvalues: index_columns = _get_pandas_index_columns(common_keyvalues) else: index_columns = [] if indices is not None and index_columns: indices += [self.reader.column_name_idx(descr['field_name']) for descr in index_columns if descr['kind'] == 'serialized'] return indices
_SPARK_DISALLOWED_CHARS = re.compile('[ ,;{}()\n\t=]') def _sanitized_spark_field_name(name): return _SPARK_DISALLOWED_CHARS.sub('_', name) def _sanitize_schema(schema, flavor): if 'spark' in flavor: sanitized_fields = [] schema_changed = False for field in schema: name = field.name sanitized_name = _sanitized_spark_field_name(name) if sanitized_name != name: schema_changed = True sanitized_field = pa.field(sanitized_name, field.type, field.nullable, field.metadata) sanitized_fields.append(sanitized_field) else: sanitized_fields.append(field) new_schema = pa.schema(sanitized_fields, metadata=schema.metadata) return new_schema, schema_changed else: return schema, False def _sanitize_table(table, new_schema, flavor): # TODO: This will not handle prohibited characters in nested field names if 'spark' in flavor: column_data = [table[i].data for i in range(table.num_columns)] return pa.Table.from_arrays(column_data, schema=new_schema) else: return table _parquet_writer_arg_docs = """version : {"1.0", "2.0"}, default "1.0" The Parquet format version, defaults to 1.0 use_dictionary : bool or list Specify if we should use dictionary encoding in general or only for some columns. use_deprecated_int96_timestamps : boolean, default None Write timestamps to INT96 Parquet format. Defaults to False unless enabled by flavor argument. This take priority over the coerce_timestamps option. coerce_timestamps : string, default None Cast timestamps a particular resolution. Valid values: {None, 'ms', 'us'} allow_truncated_timestamps : boolean, default False Allow loss of data when coercing timestamps to a particular resolution. E.g. if microsecond or nanosecond data is lost when coercing to 'ms', do not raise an exception compression : str or dict Specify the compression codec, either on a general basis or per-column. Valid values: {'NONE', 'SNAPPY', 'GZIP', 'LZO', 'BROTLI', 'LZ4', 'ZSTD'} flavor : {'spark'}, default None Sanitize schema or set other compatibility options for compatibility filesystem : FileSystem, default None If nothing passed, will be inferred from `where` if path-like, else `where` is already a file-like object so no filesystem is needed."""
[docs]class ParquetWriter(object): __doc__ = """ Class for incrementally building a Parquet file for Arrow tables Parameters ---------- where : path or file-like object schema : arrow Schema {0} """.format(_parquet_writer_arg_docs)
[docs] def __init__(self, where, schema, filesystem=None, flavor=None, version='1.0', use_dictionary=True, compression='snappy', use_deprecated_int96_timestamps=None, **options): if use_deprecated_int96_timestamps is None: # Use int96 timestamps for Spark if flavor is not None and 'spark' in flavor: use_deprecated_int96_timestamps = True else: use_deprecated_int96_timestamps = False self.flavor = flavor if flavor is not None: schema, self.schema_changed = _sanitize_schema(schema, flavor) else: self.schema_changed = False self.schema = schema self.where = where # If we open a file using a filesystem, store file handle so we can be # sure to close it when `self.close` is called. self.file_handle = None filesystem, path = resolve_filesystem_and_path(where, filesystem) if filesystem is not None: sink = self.file_handle = filesystem.open(path, 'wb') else: sink = where self.writer = _parquet.ParquetWriter( sink, schema, version=version, compression=compression, use_dictionary=use_dictionary, use_deprecated_int96_timestamps=use_deprecated_int96_timestamps, **options) self.is_open = True
def __del__(self): if getattr(self, 'is_open', False): self.close() def __enter__(self): return self def __exit__(self, *args, **kwargs): self.close() # return false since we want to propagate exceptions return False
[docs] def write_table(self, table, row_group_size=None): if self.schema_changed: table = _sanitize_table(table, self.schema, self.flavor) assert self.is_open if not table.schema.equals(self.schema, check_metadata=False): msg = ('Table schema does not match schema used to create file: ' '\ntable:\n{0!s} vs. \nfile:\n{1!s}'.format(table.schema, self.schema)) raise ValueError(msg) self.writer.write_table(table, row_group_size=row_group_size)
[docs] def close(self): if self.is_open: self.writer.close() self.is_open = False if self.file_handle is not None: self.file_handle.close()
def _get_pandas_index_columns(keyvalues): return (json.loads(keyvalues[b'pandas'].decode('utf8')) ['index_columns']) # ---------------------------------------------------------------------- # Metadata container providing instructions about reading a single Parquet # file, possibly part of a partitioned dataset class ParquetDatasetPiece(object): """ A single chunk of a potentially larger Parquet dataset to read. The arguments will indicate to read either a single row group or all row groups, and whether to add partition keys to the resulting pyarrow.Table Parameters ---------- path : str or pathlib.Path Path to file in the file system where this piece is located open_file_func : callable Function to use for obtaining file handle to dataset piece partition_keys : list of tuples [(column name, ordinal index)] row_group : int, default None Row group to load. By default, reads all row groups """ def __init__(self, path, open_file_func=partial(open, mode='rb'), row_group=None, partition_keys=None): self.path = _stringify_path(path) self.open_file_func = open_file_func self.row_group = row_group self.partition_keys = partition_keys or [] def __eq__(self, other): if not isinstance(other, ParquetDatasetPiece): return False return (self.path == other.path and self.row_group == other.row_group and self.partition_keys == other.partition_keys) def __ne__(self, other): return not (self == other) def __repr__(self): return ('{0}({1!r}, row_group={2!r}, partition_keys={3!r})' .format(type(self).__name__, self.path, self.row_group, self.partition_keys)) def __str__(self): result = '' if len(self.partition_keys) > 0: partition_str = ', '.join('{0}={1}'.format(name, index) for name, index in self.partition_keys) result += 'partition[{0}] '.format(partition_str) result += self.path if self.row_group is not None: result += ' | row_group={0}'.format(self.row_group) return result def get_metadata(self): """ Given a function that can create an open ParquetFile object, return the file's metadata """ return self.open().metadata def open(self): """ Returns instance of ParquetFile """ reader = self.open_file_func(self.path) if not isinstance(reader, ParquetFile): reader = ParquetFile(reader) return reader def read(self, columns=None, use_threads=True, partitions=None, file=None, use_pandas_metadata=False): """ Read this piece as a pyarrow.Table Parameters ---------- columns : list of column names, default None use_threads : boolean, default True Perform multi-threaded column reads partitions : ParquetPartitions, default None open_file_func : function, default None A function that knows how to construct a ParquetFile object given the file path in this piece file : file-like object passed to ParquetFile Returns ------- table : pyarrow.Table """ if self.open_file_func is not None: reader = self.open() elif file is not None: reader = ParquetFile(file) else: # try to read the local path reader = ParquetFile(self.path) options = dict(columns=columns, use_threads=use_threads, use_pandas_metadata=use_pandas_metadata) if self.row_group is not None: table = reader.read_row_group(self.row_group, **options) else: table = reader.read(**options) if len(self.partition_keys) > 0: if partitions is None: raise ValueError('Must pass partition sets') # Here, the index is the categorical code of the partition where # this piece is located. Suppose we had # # /foo=a/0.parq # /foo=b/0.parq # /foo=c/0.parq # # Then we assign a=0, b=1, c=2. And the resulting Table pieces will # have a DictionaryArray column named foo having the constant index # value as indicated. The distinct categories of the partition have # been computed in the ParquetManifest for i, (name, index) in enumerate(self.partition_keys): # The partition code is the same for all values in this piece indices = np.array([index], dtype='i4').repeat(len(table)) # This is set of all partition values, computed as part of the # manifest, so ['a', 'b', 'c'] as in our example above. dictionary = partitions.levels[i].dictionary arr = lib.DictionaryArray.from_arrays(indices, dictionary) col = lib.Column.from_array(name, arr) table = table.append_column(col) return table class PartitionSet(object): """A data structure for cataloguing the observed Parquet partitions at a particular level. So if we have /foo=a/bar=0 /foo=a/bar=1 /foo=a/bar=2 /foo=b/bar=0 /foo=b/bar=1 /foo=b/bar=2 Then we have two partition sets, one for foo, another for bar. As we visit levels of the partition hierarchy, a PartitionSet tracks the distinct values and assigns categorical codes to use when reading the pieces """ def __init__(self, name, keys=None): self.name = name self.keys = keys or [] self.key_indices = {k: i for i, k in enumerate(self.keys)} self._dictionary = None def get_index(self, key): """ Get the index of the partition value if it is known, otherwise assign one """ if key in self.key_indices: return self.key_indices[key] else: index = len(self.key_indices) self.keys.append(key) self.key_indices[key] = index return index @property def dictionary(self): if self._dictionary is not None: return self._dictionary if len(self.keys) == 0: raise ValueError('No known partition keys') # Only integer and string partition types are supported right now try: integer_keys = [int(x) for x in self.keys] dictionary = lib.array(integer_keys) except ValueError: dictionary = lib.array(self.keys) self._dictionary = dictionary return dictionary @property def is_sorted(self): return list(self.keys) == sorted(self.keys) class ParquetPartitions(object): def __init__(self): self.levels = [] self.partition_names = set() def __len__(self): return len(self.levels) def __getitem__(self, i): return self.levels[i] def get_index(self, level, name, key): """ Record a partition value at a particular level, returning the distinct code for that value at that level. Example: partitions.get_index(1, 'foo', 'a') returns 0 partitions.get_index(1, 'foo', 'b') returns 1 partitions.get_index(1, 'foo', 'c') returns 2 partitions.get_index(1, 'foo', 'a') returns 0 Parameters ---------- level : int The nesting level of the partition we are observing name : string The partition name key : string or int The partition value """ if level == len(self.levels): if name in self.partition_names: raise ValueError('{0} was the name of the partition in ' 'another level'.format(name)) part_set = PartitionSet(name) self.levels.append(part_set) self.partition_names.add(name) return self.levels[level].get_index(key) def filter_accepts_partition(self, part_key, filter, level): p_column, p_value_index = part_key f_column, op, f_value = filter if p_column != f_column: return True f_type = type(f_value) if isinstance(f_value, set): if not f_value: raise ValueError("Cannot use empty set as filter value") if op not in {'in', 'not in'}: raise ValueError("Op '%s' not supported with set value", op) if len(set([type(item) for item in f_value])) != 1: raise ValueError("All elements of set '%s' must be of" " same type", f_value) f_type = type(next(iter(f_value))) p_value = f_type((self.levels[level] .dictionary[p_value_index] .as_py())) if op == "=" or op == "==": return p_value == f_value elif op == "!=": return p_value != f_value elif op == '<': return p_value < f_value elif op == '>': return p_value > f_value elif op == '<=': return p_value <= f_value elif op == '>=': return p_value >= f_value elif op == 'in': return p_value in f_value elif op == 'not in': return p_value not in f_value else: raise ValueError("'%s' is not a valid operator in predicates.", filter[1]) class ParquetManifest(object): """ """ def __init__(self, dirpath, open_file_func=None, filesystem=None, pathsep='/', partition_scheme='hive', metadata_nthreads=1): filesystem, dirpath = _get_filesystem_and_path(filesystem, dirpath) self.filesystem = filesystem self.open_file_func = open_file_func self.pathsep = pathsep self.dirpath = _stringify_path(dirpath) self.partition_scheme = partition_scheme self.partitions = ParquetPartitions() self.pieces = [] self._metadata_nthreads = metadata_nthreads self._thread_pool = futures.ThreadPoolExecutor( max_workers=metadata_nthreads) self.common_metadata_path = None self.metadata_path = None self._visit_level(0, self.dirpath, []) # Due to concurrency, pieces will potentially by out of order if the # dataset is partitioned so we sort them to yield stable results self.pieces.sort(key=lambda piece: piece.path) if self.common_metadata_path is None: # _common_metadata is a subset of _metadata self.common_metadata_path = self.metadata_path self._thread_pool.shutdown() def _visit_level(self, level, base_path, part_keys): fs = self.filesystem _, directories, files = next(fs.walk(base_path)) filtered_files = [] for path in files: full_path = self.pathsep.join((base_path, path)) if path.endswith('_common_metadata'): self.common_metadata_path = full_path elif path.endswith('_metadata'): self.metadata_path = full_path elif self._should_silently_exclude(path): continue else: filtered_files.append(full_path) # ARROW-1079: Filter out "private" directories starting with underscore filtered_directories = [self.pathsep.join((base_path, x)) for x in directories if not _is_private_directory(x)] filtered_files.sort() filtered_directories.sort() if len(filtered_files) > 0 and len(filtered_directories) > 0: raise ValueError('Found files in an intermediate ' 'directory: {0}'.format(base_path)) elif len(filtered_directories) > 0: self._visit_directories(level, filtered_directories, part_keys) else: self._push_pieces(filtered_files, part_keys) def _should_silently_exclude(self, file_name): return (file_name.endswith('.crc') or # Checksums file_name.endswith('_$folder$') or # HDFS directories in S3 file_name.startswith('.') or # Hidden files file_name in EXCLUDED_PARQUET_PATHS) def _visit_directories(self, level, directories, part_keys): futures_list = [] for path in directories: head, tail = _path_split(path, self.pathsep) name, key = _parse_hive_partition(tail) index = self.partitions.get_index(level, name, key) dir_part_keys = part_keys + [(name, index)] # If you have less threads than levels, the wait call will block # indefinitely due to multiple waits within a thread. if level < self._metadata_nthreads: future = self._thread_pool.submit(self._visit_level, level + 1, path, dir_part_keys) futures_list.append(future) else: self._visit_level(level + 1, path, dir_part_keys) if futures_list: futures.wait(futures_list) def _parse_partition(self, dirname): if self.partition_scheme == 'hive': return _parse_hive_partition(dirname) else: raise NotImplementedError('partition schema: {0}' .format(self.partition_scheme)) def _push_pieces(self, files, part_keys): self.pieces.extend([ ParquetDatasetPiece(path, partition_keys=part_keys, open_file_func=self.open_file_func) for path in files ]) def _parse_hive_partition(value): if '=' not in value: raise ValueError('Directory name did not appear to be a ' 'partition: {0}'.format(value)) return value.split('=', 1) def _is_private_directory(x): _, tail = os.path.split(x) return tail.startswith('_') and '=' not in tail def _path_split(path, sep): i = path.rfind(sep) + 1 head, tail = path[:i], path[i:] head = head.rstrip(sep) return head, tail EXCLUDED_PARQUET_PATHS = {'_SUCCESS'}
[docs]class ParquetDataset(object): """ Encapsulates details of reading a complete Parquet dataset possibly consisting of multiple files and partitions in subdirectories Parameters ---------- path_or_paths : str or List[str] A directory name, single file name, or list of file names filesystem : FileSystem, default None If nothing passed, paths assumed to be found in the local on-disk filesystem metadata : pyarrow.parquet.FileMetaData Use metadata obtained elsewhere to validate file schemas schema : pyarrow.parquet.Schema Use schema obtained elsewhere to validate file schemas. Alternative to metadata parameter split_row_groups : boolean, default False Divide files into pieces for each row group in the file validate_schema : boolean, default True Check that individual file schemas are all the same / compatible filters : List[Tuple] or List[List[Tuple]] or None (default) List of filters to apply, like ``[[('x', '=', 0), ...], ...]``. This implements partition-level (hive) filtering only, i.e., to prevent the loading of some files of the dataset. Predicates are expressed in disjunctive normal form (DNF). This means that the innermost tuple describe a single column predicate. These inner predicate make are all combined with a conjunction (AND) into a larger predicate. The most outer list then combines all filters with a disjunction (OR). By this, we should be able to express all kinds of filters that are possible using boolean logic. This function also supports passing in as List[Tuple]. These predicates are evaluated as a conjunction. To express OR in predictates, one must use the (preferred) List[List[Tuple]] notation. metadata_nthreads: int, default 1 How many threads to allow the thread pool which is used to read the dataset metadata. Increasing this is helpful to read partitioned datasets. memory_map : boolean, default True If the source is a file path, use a memory map to read each file in the dataset if possible, which can improve performance in some environments """
[docs] def __init__(self, path_or_paths, filesystem=None, schema=None, metadata=None, split_row_groups=False, validate_schema=True, filters=None, metadata_nthreads=1, memory_map=True): a_path = path_or_paths if isinstance(a_path, list): a_path = a_path[0] self.fs, _ = _get_filesystem_and_path(filesystem, a_path) if isinstance(path_or_paths, list): self.paths = [_parse_uri(path) for path in path_or_paths] else: self.paths = _parse_uri(path_or_paths) self.memory_map = memory_map self._open_file_func = self._get_open_file_func() (self.pieces, self.partitions, self.common_metadata_path, self.metadata_path) = _make_manifest( path_or_paths, self.fs, metadata_nthreads=metadata_nthreads, open_file_func=self._open_file_func) if self.common_metadata_path is not None: with self.fs.open(self.common_metadata_path) as f: self.common_metadata = (ParquetFile(f, memory_map=memory_map) .metadata) else: self.common_metadata = None if metadata is None and self.metadata_path is not None: with self.fs.open(self.metadata_path) as f: self.metadata = ParquetFile(f, memory_map=memory_map).metadata else: self.metadata = metadata self.schema = schema self.split_row_groups = split_row_groups if split_row_groups: raise NotImplementedError("split_row_groups not yet implemented") if validate_schema: self.validate_schemas() if filters is not None: filters = _check_filters(filters) self._filter(filters)
[docs] def validate_schemas(self): if self.metadata is None and self.schema is None: if self.common_metadata is not None: self.schema = self.common_metadata.schema else: self.schema = self.pieces[0].get_metadata().schema elif self.schema is None: self.schema = self.metadata.schema # Verify schemas are all compatible dataset_schema = self.schema.to_arrow_schema() # Exclude the partition columns from the schema, they are provided # by the path, not the DatasetPiece if self.partitions is not None: for partition_name in self.partitions.partition_names: if dataset_schema.get_field_index(partition_name) != -1: field_idx = dataset_schema.get_field_index(partition_name) dataset_schema = dataset_schema.remove(field_idx) for piece in self.pieces: file_metadata = piece.get_metadata() file_schema = file_metadata.schema.to_arrow_schema() if not dataset_schema.equals(file_schema, check_metadata=False): raise ValueError('Schema in {0!s} was different. \n' '{1!s}\n\nvs\n\n{2!s}' .format(piece, file_schema, dataset_schema))
[docs] def read(self, columns=None, use_threads=True, use_pandas_metadata=False): """ Read multiple Parquet files as a single pyarrow.Table Parameters ---------- columns : List[str] Names of columns to read from the file use_threads : boolean, default True Perform multi-threaded column reads use_pandas_metadata : bool, default False Passed through to each dataset piece Returns ------- pyarrow.Table Content of the file as a table (of columns) """ tables = [] for piece in self.pieces: table = piece.read(columns=columns, use_threads=use_threads, partitions=self.partitions, use_pandas_metadata=use_pandas_metadata) tables.append(table) all_data = lib.concat_tables(tables) if use_pandas_metadata: # We need to ensure that this metadata is set in the Table's schema # so that Table.to_pandas will construct pandas.DataFrame with the # right index common_metadata = self._get_common_pandas_metadata() current_metadata = all_data.schema.metadata or {} if common_metadata and b'pandas' not in current_metadata: all_data = all_data.replace_schema_metadata({ b'pandas': common_metadata}) return all_data
[docs] def read_pandas(self, **kwargs): """ Read dataset including pandas metadata, if any. Other arguments passed through to ParquetDataset.read, see docstring for further details Returns ------- pyarrow.Table Content of the file as a table (of columns) """ return self.read(use_pandas_metadata=True, **kwargs)
def _get_common_pandas_metadata(self): if self.common_metadata is None: return None keyvalues = self.common_metadata.metadata return keyvalues.get(b'pandas', None) def _get_open_file_func(self): if self.fs is None or isinstance(self.fs, LocalFileSystem): def open_file(path, meta=None): return ParquetFile(path, metadata=meta, memory_map=self.memory_map, common_metadata=self.common_metadata) else: def open_file(path, meta=None): return ParquetFile(self.fs.open(path, mode='rb'), memory_map=self.memory_map, metadata=meta, common_metadata=self.common_metadata) return open_file def _filter(self, filters): accepts_filter = self.partitions.filter_accepts_partition def one_filter_accepts(piece, filter): return all(accepts_filter(part_key, filter, level) for level, part_key in enumerate(piece.partition_keys)) def all_filters_accept(piece): return any(all(one_filter_accepts(piece, f) for f in conjunction) for conjunction in filters) self.pieces = [p for p in self.pieces if all_filters_accept(p)]
def _make_manifest(path_or_paths, fs, pathsep='/', metadata_nthreads=1, open_file_func=None): partitions = None common_metadata_path = None metadata_path = None if isinstance(path_or_paths, list) and len(path_or_paths) == 1: # Dask passes a directory as a list of length 1 path_or_paths = path_or_paths[0] if _is_path_like(path_or_paths) and fs.isdir(path_or_paths): manifest = ParquetManifest(path_or_paths, filesystem=fs, open_file_func=open_file_func, pathsep=fs.pathsep, metadata_nthreads=metadata_nthreads) common_metadata_path = manifest.common_metadata_path metadata_path = manifest.metadata_path pieces = manifest.pieces partitions = manifest.partitions else: if not isinstance(path_or_paths, list): path_or_paths = [path_or_paths] # List of paths if len(path_or_paths) == 0: raise ValueError('Must pass at least one file path') pieces = [] for path in path_or_paths: if not fs.isfile(path): raise IOError('Passed non-file path: {0}' .format(path)) piece = ParquetDatasetPiece(path, open_file_func=open_file_func) pieces.append(piece) return pieces, partitions, common_metadata_path, metadata_path _read_table_docstring = """ {0} Parameters ---------- source: str, pyarrow.NativeFile, or file-like object If a string passed, can be a single file name or directory name. For file-like objects, only read a single file. Use pyarrow.BufferReader to read a file contained in a bytes or buffer-like object columns: list If not None, only these columns will be read from the file. A column name may be a prefix of a nested field, e.g. 'a' will select 'a.b', 'a.c', and 'a.d.e' use_threads : boolean, default True Perform multi-threaded column reads metadata : FileMetaData If separately computed memory_map : boolean, default True If the source is a file path, use a memory map to read file, which can improve performance in some environments {1} Returns ------- {2} """
[docs]def read_table(source, columns=None, use_threads=True, metadata=None, use_pandas_metadata=False, memory_map=True, filesystem=None): if _is_path_like(source): fs, path = _get_filesystem_and_path(filesystem, source) return fs.read_parquet(path, columns=columns, use_threads=use_threads, metadata=metadata, use_pandas_metadata=use_pandas_metadata) pf = ParquetFile(source, metadata=metadata) return pf.read(columns=columns, use_threads=use_threads, use_pandas_metadata=use_pandas_metadata)
read_table.__doc__ = _read_table_docstring.format( 'Read a Table from Parquet format', """use_pandas_metadata : boolean, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded""", """pyarrow.Table Content of the file as a table (of columns)""")
[docs]def read_pandas(source, columns=None, use_threads=True, memory_map=True, metadata=None): return read_table(source, columns=columns, use_threads=use_threads, metadata=metadata, memory_map=True, use_pandas_metadata=True)
read_pandas.__doc__ = _read_table_docstring.format( 'Read a Table from Parquet format, also reading DataFrame\n' 'index values if known in the file metadata', '', """pyarrow.Table Content of the file as a Table of Columns, including DataFrame indexes as columns""")
[docs]def write_table(table, where, row_group_size=None, version='1.0', use_dictionary=True, compression='snappy', use_deprecated_int96_timestamps=None, coerce_timestamps=None, allow_truncated_timestamps=False, flavor=None, filesystem=None, **kwargs): row_group_size = kwargs.pop('chunk_size', row_group_size) use_int96 = use_deprecated_int96_timestamps try: with ParquetWriter( where, table.schema, filesystem=filesystem, version=version, flavor=flavor, use_dictionary=use_dictionary, coerce_timestamps=coerce_timestamps, allow_truncated_timestamps=allow_truncated_timestamps, compression=compression, use_deprecated_int96_timestamps=use_int96, **kwargs) as writer: writer.write_table(table, row_group_size=row_group_size) except Exception: if _is_path_like(where): try: os.remove(_stringify_path(where)) except os.error: pass raise
write_table.__doc__ = """ Write a Table to Parquet format Parameters ---------- table : pyarrow.Table where: string or pyarrow.NativeFile {0} """.format(_parquet_writer_arg_docs) def _mkdir_if_not_exists(fs, path): if fs._isfilestore() and not fs.exists(path): try: fs.mkdir(path) except OSError: assert fs.exists(path)
[docs]def write_to_dataset(table, root_path, partition_cols=None, filesystem=None, **kwargs): """ Wrapper around parquet.write_table for writing a Table to Parquet format by partitions. For each combination of partition columns and values, a subdirectories are created in the following manner: root_dir/ group1=value1 group2=value1 <uuid>.parquet group2=value2 <uuid>.parquet group1=valueN group2=value1 <uuid>.parquet group2=valueN <uuid>.parquet Parameters ---------- table : pyarrow.Table root_path : string, The root directory of the dataset filesystem : FileSystem, default None If nothing passed, paths assumed to be found in the local on-disk filesystem partition_cols : list, Column names by which to partition the dataset Columns are partitioned in the order they are given **kwargs : dict, kwargs for write_table function. """ fs, root_path = _get_filesystem_and_path(filesystem, root_path) _mkdir_if_not_exists(fs, root_path) if partition_cols is not None and len(partition_cols) > 0: df = table.to_pandas(ignore_metadata=True) partition_keys = [df[col] for col in partition_cols] data_df = df.drop(partition_cols, axis='columns') data_cols = df.columns.drop(partition_cols) if len(data_cols) == 0: raise ValueError('No data left to save outside partition columns') subschema = table.schema # ARROW-2891: Ensure the output_schema is preserved when writing a # partitioned dataset for col in table.schema.names: if col in partition_cols: subschema = subschema.remove(subschema.get_field_index(col)) for keys, subgroup in data_df.groupby(partition_keys): if not isinstance(keys, tuple): keys = (keys,) subdir = '/'.join( ['{colname}={value}'.format(colname=name, value=val) for name, val in zip(partition_cols, keys)]) subtable = pa.Table.from_pandas(subgroup, preserve_index=False, schema=subschema, safe=False) prefix = '/'.join([root_path, subdir]) _mkdir_if_not_exists(fs, prefix) outfile = guid() + '.parquet' full_path = '/'.join([prefix, outfile]) with fs.open(full_path, 'wb') as f: write_table(subtable, f, **kwargs) else: outfile = guid() + '.parquet' full_path = '/'.join([root_path, outfile]) with fs.open(full_path, 'wb') as f: write_table(table, f, **kwargs)
[docs]def write_metadata(schema, where, version='1.0', use_deprecated_int96_timestamps=False, coerce_timestamps=None): """ Write metadata-only Parquet file from schema Parameters ---------- schema : pyarrow.Schema where: string or pyarrow.NativeFile version : {"1.0", "2.0"}, default "1.0" The Parquet format version, defaults to 1.0 use_deprecated_int96_timestamps : boolean, default False Write nanosecond resolution timestamps to INT96 Parquet format coerce_timestamps : string, default None Cast timestamps a particular resolution. Valid values: {None, 'ms', 'us'} filesystem : FileSystem, default None If nothing passed, paths assumed to be found in the local on-disk filesystem """ writer = ParquetWriter( where, schema, version=version, use_deprecated_int96_timestamps=use_deprecated_int96_timestamps, coerce_timestamps=coerce_timestamps) writer.close()
[docs]def read_metadata(where, memory_map=False): """ Read FileMetadata from footer of a single Parquet file Parameters ---------- where : string (filepath) or file-like object memory_map : boolean, default False Create memory map when the source is a file path Returns ------- metadata : FileMetadata """ return ParquetFile(where, memory_map=memory_map).metadata
[docs]def read_schema(where, memory_map=False): """ Read effective Arrow schema from Parquet file metadata Parameters ---------- where : string (filepath) or file-like object memory_map : boolean, default False Create memory map when the source is a file path Returns ------- schema : pyarrow.Schema """ return ParquetFile(where, memory_map=memory_map).schema.to_arrow_schema()