Source code for pyarrow.hdfs

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import os
import posixpath
import sys

from pyarrow.util import implements
from pyarrow.filesystem import FileSystem
import pyarrow.lib as lib


class HadoopFileSystem(lib.HadoopFileSystem, FileSystem):
    """
    FileSystem interface for HDFS cluster. See pyarrow.hdfs.connect for full
    connection details
    """

    def __init__(self, host="default", port=0, user=None, kerb_ticket=None,
                 driver='libhdfs', extra_conf=None):
        if driver == 'libhdfs':
            _maybe_set_hadoop_classpath()

        self._connect(host, port, user, kerb_ticket, driver, extra_conf)

    def __reduce__(self):
        return (HadoopFileSystem, (self.host, self.port, self.user,
                                   self.kerb_ticket, self.driver,
                                   self.extra_conf))

    def _isfilestore(self):
        """
        Returns True if this FileSystem is a unix-style file store with
        directories.
        """
        return True

    @implements(FileSystem.isdir)
    def isdir(self, path):
        return super(HadoopFileSystem, self).isdir(path)

    @implements(FileSystem.isfile)
    def isfile(self, path):
        return super(HadoopFileSystem, self).isfile(path)

[docs] @implements(FileSystem.delete) def delete(self, path, recursive=False): return super(HadoopFileSystem, self).delete(path, recursive)
[docs] def mkdir(self, path, **kwargs): """ Create directory in HDFS Parameters ---------- path : string Directory path to create, including any parent directories Notes ----- libhdfs does not support create_parents=False, so we ignore this here """ return super(HadoopFileSystem, self).mkdir(path)
@implements(FileSystem.rename) def rename(self, path, new_path): return super(HadoopFileSystem, self).rename(path, new_path)
[docs] @implements(FileSystem.exists) def exists(self, path): return super(HadoopFileSystem, self).exists(path)
[docs] def ls(self, path, detail=False): """ Retrieve directory contents and metadata, if requested. Parameters ---------- path : HDFS path detail : boolean, default False If False, only return list of paths Returns ------- result : list of dicts (detail=True) or strings (detail=False) """ return super(HadoopFileSystem, self).ls(path, detail)
def walk(self, top_path): """ Directory tree generator for HDFS, like os.walk Parameters ---------- top_path : string Root directory for tree traversal Returns ------- Generator yielding 3-tuple (dirpath, dirnames, filename) """ contents = self.ls(top_path, detail=True) directories, files = _libhdfs_walk_files_dirs(top_path, contents) yield top_path, directories, files for dirname in directories: for tup in self.walk(self._path_join(top_path, dirname)): yield tup def _maybe_set_hadoop_classpath(): if 'hadoop' in os.environ.get('CLASSPATH', ''): return if 'HADOOP_HOME' in os.environ: if sys.platform != 'win32': classpath = _derive_hadoop_classpath() else: hadoop_bin = '{0}/bin/hadoop'.format(os.environ['HADOOP_HOME']) classpath = _hadoop_classpath_glob(hadoop_bin) else: classpath = _hadoop_classpath_glob('hadoop') os.environ['CLASSPATH'] = classpath.decode('utf-8') def _derive_hadoop_classpath(): import subprocess find_args = ('find', os.environ['HADOOP_HOME'], '-name', '*.jar') find = subprocess.Popen(find_args, stdout=subprocess.PIPE) xargs_echo = subprocess.Popen(('xargs', 'echo'), stdin=find.stdout, stdout=subprocess.PIPE) jars = subprocess.check_output(('tr', "' '", "':'"), stdin=xargs_echo.stdout) hadoop_conf = os.environ["HADOOP_CONF_DIR"] \ if "HADOOP_CONF_DIR" in os.environ \ else os.environ["HADOOP_HOME"] + "/etc/hadoop" return (hadoop_conf + ":").encode("utf-8") + jars def _hadoop_classpath_glob(hadoop_bin): import subprocess hadoop_classpath_args = (hadoop_bin, 'classpath', '--glob') return subprocess.check_output(hadoop_classpath_args) def _libhdfs_walk_files_dirs(top_path, contents): files = [] directories = [] for c in contents: scrubbed_name = posixpath.split(c['name'])[1] if c['kind'] == 'file': files.append(scrubbed_name) else: directories.append(scrubbed_name) return directories, files def connect(host="default", port=0, user=None, kerb_ticket=None, driver='libhdfs', extra_conf=None): """ Connect to an HDFS cluster. All parameters are optional and should only be set if the defaults need to be overridden. Authentication should be automatic if the HDFS cluster uses Kerberos. However, if a username is specified, then the ticket cache will likely be required. Parameters ---------- host : NameNode. Set to "default" for fs.defaultFS from core-site.xml. port : NameNode's port. Set to 0 for default or logical (HA) nodes. user : Username when connecting to HDFS; None implies login user. kerb_ticket : Path to Kerberos ticket cache. driver : {'libhdfs', 'libhdfs3'}, default 'libhdfs' Connect using libhdfs (JNI-based) or libhdfs3 (3rd-party C++ library from Apache HAWQ (incubating) ) extra_conf : dict, default None extra Key/Value pairs for config; Will override any hdfs-site.xml properties Notes ----- The first time you call this method, it will take longer than usual due to JNI spin-up time. Returns ------- filesystem : HadoopFileSystem """ fs = HadoopFileSystem(host=host, port=port, user=user, kerb_ticket=kerb_ticket, driver=driver, extra_conf=extra_conf) return fs